Institute of Biological and Chemical Systems - Functional Molecular Systems

Publications


  1. Development of new self-assembled cationic amino liposomes for efficient gene delivery.
    Wu, Y.; Xiong, Y.; Wang, L.; Zhou, Q.; Li, L.; Levkin, P. A.; Davidson, G.; Gao, L.; Deng, W.
    2020. Biomaterials science, 8 (11), 3021–3025. doi:10.1039/d0bm00331j
  2. Fam83F induces p53 stabilisation and promotes its activity.
    Salama, M.; Benitez-Riquelme, D.; Elabd, S.; Munoz, L.; Zhang, P.; Glanemann, M.; Mione, M. C.; Goldin, R.; Soussi, T.; Davidson, G.; Blattner, C.
    2019. Cell death and differentiation, 26, 2125–2138. doi:10.1038/s41418-019-0281-1
  3. Single-Tailed Lipidoids Enhance the Transfection Activity of Their Double-Tailed Counterparts.
    Wu, Y.; Li, L.; Chen, Q.; Su, Y.; Levkin, P. A.; Davidson, G.
    2016. ACS Combinatorial Science, 18 (1), 43–50. doi:10.1021/acscombsci.5b00117
  4. Combinatorial synthesis and high throughput screening of lipidoids for gene delivery.
    Wu, Y.; Li, L.; Levkin, P. A.; Davidson, G.
    2015. Journal of controlled release, 213, E134-E134. doi:10.1016/j.jconrel.2015.05.226
  5. Expression screening using a Medaka cDNA library identifies evolutionarily conserved regulators of the p53/Mdm2 pathway.
    Zhang, P.; Kratz, A. S.; Salama, M.; Elabd, S.; Heinrich, T.; Wittbrodt, J.; Blattner, C.; Davidson, G.
    2015. BMC Biotechnology, 15 (1), 92. doi:10.1186/s12896-015-0208-y
  6. TRIM25 has a dual function in the p53/Mdm2 circuit.
    Zhang, P.; Elabd, S.; Hammer, S.; Solozobova, V.; Yan, H.; Bartel, F.; Inoue, S.; Henrich, T.; Wittbrodt, J.; Loosli, F.; Davidson, G.; Blattner, C.
    2015. Oncogene, 34, 5729–5738. doi:10.1038/onc.2015.21
  7. Study of receptor-ligand interactions in living specimens by using dual-color dual-focus line-scanning FCS.
    Doerlich, R. M.; Chen, Q.; Hedde, P. N.; Schuster, V.; Hippler, M.; Davidson, G.; Nienhaus, G. U.
    2015. Biophysical Society 59th Annual Meeting, Baltimore, Md., February 7-11, 2015 Biophysical Journal, 108(2015) Suppl.1, a (Abstract)
  8. Combinatorial synthesis and high throughput screening of lipdoids for gene delivery.
    Wu, Y.; Li, L.; Levkin, P. A.; Davidson, G.
    2015. 3rd Symposium on Innovative Polymers for Controlled Delivery (SIPCD 2014), Suzhou, China, September 16-19, 2014 Journal of Controlled Release, 213(2015) (Abstract)
  9. ScreenFect A: An efficient and low toxic liposome for gene delivery to mesenchymal stem cells.
    Li, L. M.; Ruan, G. X.; HuangFu, M. Y.; Chen, Z. L.; Liu, H. N.; Li, L. X.; Hu, Y. L.; Han, M.; Davidson, G.; Levkin, P. A.; Gao, J. Q.
    2015. International journal of pharmaceutics, 488 (1-2), 1–11. doi:10.1016/j.ijpharm.2015.04.050
  10. Dual-color dual-focus line-scanning FCS for quantitative analysis of receptor-ligand interactions in living specimens.
    Dörlich, R. M.; Chen, Q.; Hedde, P. N.; Schuster, V.; Hippler, M.; Wesslowski, J.; Davidson, G.; Nienhaus, G. U.
    2015. Scientific Reports, 5, 10149. doi:10.1038/srep10149
  11. CD44 functions in Wnt signaling by regulating LRP6 localization and activation.
    Schmitt, M.; Metzger, M.; Gradl, D.; Davidson, G.; Orian-Rousseau, V.
    2015. Cell death and differentiation, 22, 677–689. doi:10.1038/cdd.2014.156
  12. Wnt signaling at the membrane.
    Davidson, G.; Niehrs, C.
    2014. Hoppler, S.P. [Hrsg.] Wnt Signaling in Development and Disease : Molecular Mechanisms and Biological Functions Hoboken, N.J. : Wiley-Blackwell, 2014, 15–32
  13. Tyrosine phosphorylation of LRP6 by Src and Fer inhibits Wnt/β-catenin signaling.
    Chen, Q.; Su, Y.; Wesslowski, J.; Hagemann, A. I.; Ramialison, M.; Wittbrodt, J.; Scholpp, S.; Davidson, G.
    2014. EMBO reports, 15, 1254–1267. doi:10.15252/embr.201439644
  14. In vivo analysis of formation and endocytosis of the Wnt/β-catenin signaling complex in zebrafish embryos.
    Hagemann, A. I. H.; Kurz, J.; Kauffeld, S.; Chen, Q.; Reeves, P. M.; Weber, S.; Schindler, S.; Davidson, G.; Kirchhausen, T.; Scholpp, S.
    2014. Journal of cell science, 127, 3970–3982. doi:10.1242/jcs.148767
  15. Combinatorial synthesis and high-throughput screening of alkyl amines for nonviral gene delivery.
    Li, L.; Wang, F.; Wu, Y.; Davidson, G.; Levkin, P. A.
    2013. Bioconjugate Chemistry, 24, 1543–1551. doi:10.1021/bc400158w
  16. A biomimetic lipid library for gene delivery through thiol-yne click chemistry.
    Li, L.; Zahner, D.; Su, Y.; Gruen, C.; Davidson, G.; Levkin, P. A.
    2012. Biomaterials, 33, 8160–8166. doi:10.1016/j.biomaterials.2012.07.044
  17. Wnt3 and Wnt3a are required for induction of the mid-diencephalic organizer in the caudal forebrain.
    Mattes, B.; Weber, S.; Peres, J.; Chen, Q.; Davidson, G.; Houart, C.; Scholpp, S.
    2012. Neural development, 7. doi:10.1186/1749-8104-7-12
  18. Emerging links between CDK cell cycle regulators and Wnt signaling.
    Davidson, G.; Niehrs, C.
    2010. Trends in Cell Biology, 20, 453–60. doi:10.1016/j.tcb.2010.05.002
  19. The cell cycle and Wnt.
    Davidson, G.
    2010. Cell Cycle, 9, 1667–68. doi:10.4161/cc.9.9.11595
  20. Cell cycle control of Wnt receptor activation.
    Davidson, G.; Shen, J.; Huang, Y. L.; Su, Y.; Karaulanov, E.; Bartscherer, K.; Hassler, C.; Stannek, P.; Boutros, M.; Niehrs, C.
    2009. Developmental Cell, 17, 788–99. doi:10.1016/j.devcel.2009.11.006