1. High‐throughput formation of miniaturized cocultures of 2D cell monolayers and 3D cell spheroids using droplet microarray
    Cui, H.; Tronser, T.; Wang, X.; Wesslowski, J.; Davidson, G.; Popova, A. A.; Levkin, P. A.
    2023. Droplet, 2 (1), Art.-Nr.: e39. doi:10.1002/dro2.39
  2. NanoBiT ‐ and NanoBiT/BRET ‐based assays allow the analysis of binding kinetics of Wnt‐3a to endogenous Frizzled 7 in a colorectal cancer model
    Grätz, L.; Sajkowska-Kozielewicz, J. J.; Wesslowski, J.; Kinsolving, J.; Bridge, L. J.; Petzold, K.; Davidson, G.; Schulte, G.; Kozielewicz, P.
    2023. British Journal of Pharmacology. doi:10.1111/bph.16090
  3. N-Glycosylation of LRP6 by B3GnT2 Promotes Wnt/β-Catenin Signalling
    Xu, R.; Wang, X.; Safi, S.; Braunegger, N.; Hipgrave Ederveen, A.; Rottmann, M.; Wittbrodt, J.; Wuhrer, M.; Wesslowski, J.; Davidson, G.
    2023. Cells, 12 (6), Art.-Nr.: 863. doi:10.3390/cells12060863
  4. LRPs in WNT Signalling
    Davidson, G.
    2021. Pharmacology of the WNT Signaling System. Ed.: G. Schulte, 45–73, Springer International Publishing. doi:10.1007/164_2021_526
  5. Quantitative Profiling of WNT-3A Binding to All Human Frizzled Paralogues in HEK293 Cells by NanoBiT/BRET Assessments
    Kozielewicz, P.; Shekhani, R.; Moser, S.; Bowin, C.-F.; Wesslowski, J.; Davidson, G.; Schulte, G.
    2021. ACS Pharmacology and Translational Science, 4 (3), 1235–1245. doi:10.1021/acsptsci.1c00084
  6. Assembly of Multi‐Spheroid Cellular Architectures by Programmable Droplet Merging
    Cui, H.; Wang, X.; Wesslowski, J.; Tronser, T.; Rosenbauer, J.; Schug, A.; Davidson, G.; Popova, A. A.; Levkin, P. A.
    2021. Advanced materials, 33 (4), Art.-Nr.: 2006434. doi:10.1002/adma.202006434
  7. Cell-based high-throughput screening of cationic polymers for efficient DNA and siRNA delivery
    Wu, Y.; Wang, L.; Xiong, Y.; Zhou, Q.; Li, L.; Chen, G.; Ping, Y.; Davidson, G.; Levkin, P. A.; Gao, L.; Deng, W.
    2020. Acta biomaterialia, 115, 410–417. doi:10.1016/j.actbio.2020.08.029
  8. eGFP-tagged Wnt-3a enables functional analysis of Wnt trafficking and signaling and kinetic assessment of Wnt binding to full-length Frizzled
    Wesslowski, J.; Kozielewicz, P.; Wang, X.; Cui, H.; Schihada, H.; Kranz, D.; Karuna M, P.; Levkin, P.; Gross, J. C.; Boutros, M.; Schulte, G.; Davidson, G.
    2020. Journal of Biological Chemistry, 295 (26), 8759–8774. doi:10.1074/jbc.RA120.012892
  9. Development of new self-assembled cationic amino liposomes for efficient gene delivery
    Wu, Y.; Xiong, Y.; Wang, L.; Zhou, Q.; Li, L.; Levkin, P. A.; Davidson, G.; Gao, L.; Deng, W.
    2020. Biomaterials science, 8 (11), 3021–3025. doi:10.1039/d0bm00331j
  10. Measuring ligand-cell surface receptor affinities with axial line-scanning fluorescence correlation spectroscopy
    Eckert, A. F.; Gao, P.; Wesslowski, J.; Wang, X.; Rath, J.; Nienhaus, K.; Davidson, G.; Nienhaus, G. U.
    2020. eLife, 9, Article No. e55286. doi:10.7554/eLife.55286
  11. Fam83F induces p53 stabilisation and promotes its activity
    Salama, M.; Benitez-Riquelme, D.; Elabd, S.; Munoz, L.; Zhang, P.; Glanemann, M.; Mione, M. C.; Goldin, R.; Soussi, T.; Davidson, G.; Blattner, C.
    2019. Cell death and differentiation, 26, 2125–2138. doi:10.1038/s41418-019-0281-1
  12. Single-Tailed Lipidoids Enhance the Transfection Activity of Their Double-Tailed Counterparts
    Wu, Y.; Li, L.; Chen, Q.; Su, Y.; Levkin, P. A.; Davidson, G.
    2016. ACS Combinatorial Science, 18 (1), 43–50. doi:10.1021/acscombsci.5b00117
  13. Combinatorial synthesis and high throughput screening of lipidoids for gene delivery
    Wu, Y.; Li, L.; Levkin, P. A.; Davidson, G.
    2015. Journal of controlled release, 213, E134-E134. doi:10.1016/j.jconrel.2015.05.226
  14. Expression screening using a Medaka cDNA library identifies evolutionarily conserved regulators of the p53/Mdm2 pathway
    Zhang, P.; Kratz, A. S.; Salama, M.; Elabd, S.; Heinrich, T.; Wittbrodt, J.; Blattner, C.; Davidson, G.
    2015. BMC Biotechnology, 15 (1), 92. doi:10.1186/s12896-015-0208-y
  15. TRIM25 has a dual function in the p53/Mdm2 circuit
    Zhang, P.; Elabd, S.; Hammer, S.; Solozobova, V.; Yan, H.; Bartel, F.; Inoue, S.; Henrich, T.; Wittbrodt, J.; Loosli, F.; Davidson, G.; Blattner, C.
    2015. Oncogene, 34, 5729–5738. doi:10.1038/onc.2015.21
  16. Study of receptor-ligand interactions in living specimens by using dual-color dual-focus line-scanning FCS
    Doerlich, R. M.; Chen, Q.; Hedde, P. N.; Schuster, V.; Hippler, M.; Davidson, G.; Nienhaus, G. U.
    2015. Biophysical Society 59th Annual Meeting, Baltimore, Md., February 7-11, 2015 Biophysical Journal, 108(2015) Suppl.1, a (Abstract)
  17. Combinatorial synthesis and high throughput screening of lipdoids for gene delivery
    Wu, Y.; Li, L.; Levkin, P. A.; Davidson, G.
    2015. 3rd Symposium on Innovative Polymers for Controlled Delivery (SIPCD 2014), Suzhou, China, September 16-19, 2014 Journal of Controlled Release, 213(2015) (Abstract)
  18. ScreenFect A: An efficient and low toxic liposome for gene delivery to mesenchymal stem cells
    Li, L. M.; Ruan, G. X.; HuangFu, M. Y.; Chen, Z. L.; Liu, H. N.; Li, L. X.; Hu, Y. L.; Han, M.; Davidson, G.; Levkin, P. A.; Gao, J. Q.
    2015. International journal of pharmaceutics, 488 (1-2), 1–11. doi:10.1016/j.ijpharm.2015.04.050
  19. Dual-color dual-focus line-scanning FCS for quantitative analysis of receptor-ligand interactions in living specimens
    Dörlich, R. M.; Chen, Q.; Hedde, P. N.; Schuster, V.; Hippler, M.; Wesslowski, J.; Davidson, G.; Nienhaus, G. U.
    2015. Scientific Reports, 5, 10149. doi:10.1038/srep10149
  20. CD44 functions in Wnt signaling by regulating LRP6 localization and activation
    Schmitt, M.; Metzger, M.; Gradl, D.; Davidson, G.; Orian-Rousseau, V.
    2015. Cell death and differentiation, 22, 677–689. doi:10.1038/cdd.2014.156
  21. Wnt signaling at the membrane
    Davidson, G.; Niehrs, C.
    2014. Hoppler, S.P. [Hrsg.] Wnt Signaling in Development and Disease : Molecular Mechanisms and Biological Functions Hoboken, N.J. : Wiley-Blackwell, 2014, 15–32
  22. Tyrosine phosphorylation of LRP6 by Src and Fer inhibits Wnt/β-catenin signaling
    Chen, Q.; Su, Y.; Wesslowski, J.; Hagemann, A. I.; Ramialison, M.; Wittbrodt, J.; Scholpp, S.; Davidson, G.
    2014. EMBO reports, 15, 1254–1267. doi:10.15252/embr.201439644
  23. In vivo analysis of formation and endocytosis of the Wnt/β-catenin signaling complex in zebrafish embryos
    Hagemann, A. I. H.; Kurz, J.; Kauffeld, S.; Chen, Q.; Reeves, P. M.; Weber, S.; Schindler, S.; Davidson, G.; Kirchhausen, T.; Scholpp, S.
    2014. Journal of cell science, 127, 3970–3982. doi:10.1242/jcs.148767
  24. Combinatorial synthesis and high-throughput screening of alkyl amines for nonviral gene delivery
    Li, L.; Wang, F.; Wu, Y.; Davidson, G.; Levkin, P. A.
    2013. Bioconjugate Chemistry, 24, 1543–1551. doi:10.1021/bc400158w
  25. A biomimetic lipid library for gene delivery through thiol-yne click chemistry
    Li, L.; Zahner, D.; Su, Y.; Gruen, C.; Davidson, G.; Levkin, P. A.
    2012. Biomaterials, 33, 8160–8166. doi:10.1016/j.biomaterials.2012.07.044
  26. Wnt3 and Wnt3a are required for induction of the mid-diencephalic organizer in the caudal forebrain
    Mattes, B.; Weber, S.; Peres, J.; Chen, Q.; Davidson, G.; Houart, C.; Scholpp, S.
    2012. Neural development, 7. doi:10.1186/1749-8104-7-12
  27. Emerging links between CDK cell cycle regulators and Wnt signaling
    Davidson, G.; Niehrs, C.
    2010. Trends in Cell Biology, 20, 453–60. doi:10.1016/j.tcb.2010.05.002
  28. The cell cycle and Wnt
    Davidson, G.
    2010. Cell Cycle, 9, 1667–68. doi:10.4161/cc.9.9.11595
  29. Cell cycle control of Wnt receptor activation
    Davidson, G.; Shen, J.; Huang, Y. L.; Su, Y.; Karaulanov, E.; Bartscherer, K.; Hassler, C.; Stannek, P.; Boutros, M.; Niehrs, C.
    2009. Developmental Cell, 17, 788–99. doi:10.1016/j.devcel.2009.11.006