Publikationsliste


  1. Optical Micromanipulations Based on Model Predictive Control of Thermoviscous Flows
    Erben, E.; Saraev, I.; Liao, W.; Nan, F.; Lauga, E.; Kreysing, M.
    2025. Small, 21 (38), Art.-Nr.: 01039. doi:10.1002/smll.202501039
  2. Development and Application of Technologies for Liquid Manipulation on Droplet Microarrays. Dissertation
    Urrutia Gómez, J. E.
    2025, März 18. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000179833
  3. BPS2025 - Focused light-induced cytoplasmatic streaming—A new method for non-invasive induction of intracellular flow to investigate physical principles of cell organization
    Rapp, G.; Erben, E.; Stoev, I.; Schroth-Diez, B.; Huhn, F.; Warnck, S.; Maghelli, N.; Kreysing, M.
    2025. Biophysical Journal, 124 (3), Art.-Nr.: 495a. doi:10.1016/j.bpj.2024.11.2606
  4. Active and Probe-Free Intracellular Rheology via Phase-Sensitive Thermoviscous Flows
    Stoev, I. D.; Bolger-Munro, M.; Minopoli, A.; Wagner, S.; Krishnaswamy, V. R.; Erben, E.; Weißenbruch, K.; Maghelli, N.; Bastmeyer, M.; Heisenberg, C.-P.; Kreysing, M.
    2025. Cold Spring Harbor Laboratory. doi:10.1101/2025.04.07.647540
  5. Thermoviscous flows for microfluidic manipulation
    Liao, W.; Rezaei, R.; Erben, E.; Kreysing, M.; Lauga, E.
    2024. APS Division of Fluid Dynamics (Fall) 2024, abstract id.J19.004, J19–004
  6. Opto-fluidically multiplexed assembly and micro-robotics
    Erben, E.; Liao, W.; Minopoli, A.; Maghelli, N.; Lauga, E.; Kreysing, M.
    2024. Light: Science & Applications, 13 (1), 59. doi:10.1038/s41377-024-01406-4
  7. Probe-free optical chromatin deformation and measurement of differential mechanical properties in the nucleus
    Seelbinder, B.; Wagner, S.; Jain, M.; Erben, E.; Klykov, S.; Stoev, I. D.; Krishnaswamy, V. R.; Kreysing, M.
    2024. eLife, 13. doi:10.7554/eLife.76421
  8. Cleavage furrow-directed cortical flows bias PAR polarization pathways to link cell polarity to cell division
    Ng, K.; Hirani, N.; Bland, T.; Borrego-Pinto, J.; Wagner, S.; Kreysing, M.; Goehring, N. W.
    2023. Current Biology, 33 (20), 4298–4311.e6. doi:10.1016/j.cub.2023.08.076
  9. ISO-FLUCS: symmetrization of optofluidic manipulations in quasi-isothermal micro-environments
    Minopoli, A.; Wagner, S.; Erben, E.; Liao, W.; Stoev, I. D.; Lauga, E.; Kreysing, M.
    2023. eLight, 3, Art.-Nr.: 16. doi:10.1186/s43593-023-00049-z
  10. Theoretical model of confined thermoviscous flows for artificial cytoplasmic streaming
    Liao, W.; Erben, E.; Kreysing, M.; Lauga, E.
    2023. Physical Review Fluids, 8 (3), Art.-Nr.: 034202. doi:10.1103/PhysRevFluids.8.034202
  11. Charge-density reduction promotes ribozyme activity in RNA–peptide coacervates via RNA fluidization and magnesium partitioning
    Iglesias-Artola, J. M.; Drobot, B.; Kar, M.; Fritsch, A. W.; Mutschler, H.; Dora Tang, T.-Y.; Kreysing, M.
    2022. Nature Chemistry, 14 (4), 407–416. doi:10.1038/s41557-022-00890-8
  12. Local thermodynamics govern formation and dissolution of Caenorhabditis elegans P granule condensates
    Fritsch, A. W.; Diaz-Delgadillo, A. F.; Adame-Arana, O.; Hoege, C.; Mittasch, M.; Kreysing, M.; Leaver, M.; Hyman, A. A.; Jülicher, F.; Weber, C. A.
    2021. Proceedings of the National Academy of Sciences, 118 (37). doi:10.1073/pnas.2102772118
  13. Feedback-based positioning and diffusion suppression of particles via optical control of thermoviscous flows
    Erben, E.; Seelbinder, B.; Stoev, I. D.; Klykov, S.; Maghelli, N.; Kreysing, M.
    2021. Optics Express, 29 (19), 30272. doi:10.1364/OE.432935
  14. Optical plasticity of mammalian cells
    Subramanian, K.; Petzold, H.; Seelbinder, B.; Hersemann, L.; Nüsslein, I.; Kreysing, M.
    2021. Journal of Biophotonics, 14 (4), e202000457. doi:10.1002/jbio.202000457
  15. Condensation of Ded1p Promotes a Translational Switch from Housekeeping to Stress Protein Production
    Iserman, C.; Desroches Altamirano, C.; Jegers, C.; Friedrich, U.; Zarin, T.; Fritsch, A. W.; Mittasch, M.; Domingues, A.; Hersemann, L.; Jahnel, M.; Richter, D.; Guenther, U.-P.; Hentze, M. W.; Moses, A. M.; Hyman, A. A.; Kramer, G.; Kreysing, M.; Franzmann, T. M.; Alberti, S.
    2020. Cell, 181 (4), 818–831.e19. doi:10.1016/j.cell.2020.04.009
  16. Regulated changes in material properties underlie centrosome disassembly during mitotic exit
    Mittasch, M.; Tran, V. M.; Rios, M. U.; Fritsch, A. W.; Enos, S. J.; Ferreira Gomes, B.; Bond, A.; Kreysing, M.; Woodruff, J. B.
    2020. Journal of Cell Biology, 219 (4). doi:10.1083/jcb.201912036
  17. Rod nuclear architecture determines contrast transmission of the retina and behavioral sensitivity in mice
    Subramanian, K.; Weigert, M.; Borsch, O.; Petzold, H.; Garcia-Ulloa, A.; Myers, E. W.; Ader, M.; Solovei, I.; Kreysing, M.
    2019. eLife, 8, e49542. doi:10.7554/eLife.49542
  18. Non-invasive perturbations of intracellular flow reveal physical principles of cell organization
    Mittasch, M.; Gross, P.; Nestler, M.; Fritsch, A. W.; Iserman, C.; Kar, M.; Munder, M.; Voigt, A.; Alberti, S.; Grill, S. W.; Kreysing, M.
    2018. Nature Cell Biology, 20 (3), 344–351. doi:10.1038/s41556-017-0032-9
  19. Photonic Crystal Light Collectors in Fish Retina Improve Vision in Turbid Water
    Kreysing, M.; Pusch, R.; Haverkate, D.; Landsberger, M.; Engelmann, J.; Ruiter, J.; Mora-Ferrer, C.; Ulbricht, E.; Grosche, J.; Franze, K.; Streif, S.; Schumacher, S.; Makarov, F.; Kacza, J.; Guck, J.; Wolburg, H.; Bowmaker, J. K.; von der Emde, G.; Schuster, S.; Wagner, H.-J.; Reichenbach, A.; Francke, M.
    2012. Science, 336 (6089), 1700–1703. doi:10.1126/science.1218072
  20. Nuclear Architecture of Rod Photoreceptor Cells Adapts to Vision in Mammalian Evolution
    Solovei, I.; Kreysing, M.; Lanctôt, C.; Kösem, S.; Peichl, L.; Cremer, T.; Guck, J.; Joffe, B.
    2009. Cell, 137 (2), 356–368. doi:10.1016/j.cell.2009.01.052